Fractal dimensionality of Levy processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Levy processes for image modelling

Nonhomogenous random fields are known to be well adapted to modeling a wide class of images. Their computational complexity generally causes their lack of appeal, we propose a more efficient model capable of capturing textures, shapes, as well as jumps typically encountered in infra-red images. The so-called Levy Random fields as we show, can indeed represent a very well adapted alternative for...

متن کامل

A weak approximation for the Extrema's distributions of Levy processes

‎Suppose that $X_{t}$ is a one-dimensional and real-valued L'evy‎ ‎process started from $X_0=0$‎, ‎which ({bf 1}) its nonnegative‎ ‎jumps measure $nu$ satisfying $int_{Bbb‎ ‎R}min{1,x^2}nu(dx)

متن کامل

Fractal Dimension and Dimensionality Reduction

ABSTRACT In this paper we investigate the relationship between several dimensionality redu tion methods and the intrinsi dimensionality of the data in the redu ed spa e, as estimated by the fra tal dimension. We show that a su essful dimensionality redu tion/feature extra tion algorithm proje ts the data into a feature spa e with dimensionality lose to the intrinsi dimensionality of the data in...

متن کامل

Fractal Theory Space: Spacetime of Noninteger Dimensionality

We construct matter field theories in “theory space” that are fractal, and invariant under geometrical renormalization group (RG) transformations. We treat in detail complex scalars, and discuss issues related to fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a noninteger spatial dimension which appears above a RG invariant “compactific...

متن کامل

Path Decompositions for Real Levy Processes

– Let X be a real Lévy process and let X↑ be the process conditioned to stay positive. We assume that 0 is regular for (−∞,0) and (0,+∞) with respect to X. Using elementary excursion theory arguments, we provide a simple probabilistic description of the reversed paths of X and X↑ at their first hitting time of (x,+∞) and last passage time of (−∞, x], on a fixed time interval [0, t], for a posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1982

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.79.14.4501